data(Titanic)
titanic <- as.data.frame(Titanic)
# the default
scpcp(titanic)
# no rectangles
scpcp(titanic, level.width = 0)
# no gaps between levels
scpcp(titanic, gap = 0)
# default with highlighting
scpcp(titanic, sel = "data[,4]")
# random color vector: cases are sorted by color vaiable
scpcp(titanic, sel = "sample(1:6,nrow(data),T)", sel.hide = FALSE)
# Survivors among men and some layout changes
scpcp(data = titanic, sel = "Sex==levels(Sex)[1] & Survived==levels(Survived)[1]",
sel.palette = "w", col.opt = list(alpha = 0.7, border = alpha(1, 0.3)),
gap = 0.5, level.width = 0.3)
# mushroom data from the UCI machine learning repository
MR <- read.table("http://rosuda.org/mitarbeiter/pilhoefer/agaricus.dat", sep = "\t",
quote = "", header = TRUE)
levels(MR$stalk_root) <- c(levels(MR$stalk_root), "N/A")
MR$stalk_root[which(is.na(MR$stalk_root))] <- "N/A"
op <- optile(MR[, 1:12], method = "joint")
scpcp(op, sel = "odor", sel.palette = "w", col.opt = list(border = alpha(1,
0.1)), lab.opt = list(rot = 45))
“# ADAC ecotest data with four clusterings (k-means, mclust, hierarchical Ward, hierarchical complete)
```r
eco <- read.table("http://rosuda.org/mitarbeiter/pilhoefer/eco2plus.dat", sep = "\t",
quote = "", header = TRUE)
# illustrate reordering success using coloring
scpcp(eco[, 13:16], sel = "data[,1]", sel.palette = "d")
# the same, but after reordering
scpcp(optile(eco[, 13:16]), sel = "data[,1]", sel.palette = "d", col.opt = list(border = alpha(1,
0.1)))
# car classes (lower to upper class)
eco$Klasse <- factor(eco$Klasse, levels = levels(eco$Klasse)[c(3, 1, 2, 7, 4,
5, 6)])
scpcp(eco[, 17:20], sel = eco$Klasse, sel.palette = "s", col.opt = list(h = 140))
scpcp(eco[, c(3, 17:20)], sel = eco$Klasse, sel.palette = "s", col.opt = list(h = 140),
lab.opt = list(abbr = 5))