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Chapter 1

Usage of KLIMT

1.1 Getting started

KLIMT is a stand-alone application but intended for use in conjunction with
R. This chapter gives an overview of the main features and basic introduction
to the usage of KLIMT. Processing and preparation of the data in R is not
illustrated here, I assume that the user is familiar at least with the basic
functionality of R, such as loading of datasets and libraries. Furthermore
the unidirectional file interface will be used, because the flexibility of the Q
interface is beyond the the scope of this work. An example for € interface
can be found in the appendix.

Once in R the quick start to KLIMT with an existing dataset looks like
this:

source("klimt.r");
d<-read.table("mydataset.txt");
t<-tree (0UT2".,d);

Klimt(t,d);

First line loads the functions necessary for the interface to KLIMT from
the file k1limt.r. As a side effect the Ripley’s tree library is loaded as well.
Second line loads a dataset from external file to the variable d. If you already
have a dataset or want to use R’s internal datasets you can use the corre-
sponding function of R to load the dataset to the variable d. In the third line
a tree is built using default parameters of the tree function. The model is
given as OUT2". meaning that OUT2 is the classification variable and all other
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variables should be used to build the classifier. The call does not differ for
regression trees, the correct tree is chosen corresponding to the kind of the
dependent variable. At this point any additional parameters influencing the
tree growth can be applied, such as the choice of the criterion or stopping
rules (mincut, minsize, nmax, etc. - see documentation for tree.control and
tree). Finally KLIMT is started with the tree t and the dataset d.

1.2 Variables

When KLIMT is started, two main windows appear: a variables window and
a tree window. Variables window lists all variables of the dataset and is
the central place for any actions when the dataset is concerned. In this
example the dataset consists of one index variable, four numerical variables
ALTER, FIE, ZZLQ and GRA, and one categorical variable OUT2 as illustrated
in Fig. 1.1. Beside each variable name red letters denote the type of the
variable. N stands numerical, S for string and C for categorical variable.
String variable must be categorical, but a numerical variable can be either
categorical or continuous. The star symbol (*) appears beside variables that
contain missing values. Single click on a variable name selects the variable.
Multiple variables can be selected by holding the <Shift> button. In the
bottom part of the window various commands can be chosen. Clicking on
Exit closes the entire KLIMT application. If you generated more trees with
the same dataset you can open additional tree files by clicking the Open tree
button. As long as the newly read tree uses the same dataset! it will be linked
with all other plots and existing trees. Hist/Bar button displays histograms
or barcharts for all selected variables - for continuous variables histograms
are plotted, for categorical variables barcharts will be shown. If exactly two
variables are selected, a scatterplot or parallel dotplot is drawn, depending
on the type of each variable.

LAs the tree file contains variable names only KLIMT will let you load tree of any
dataset as long as the variables used in splits and the classes associated with leaves are
present in the currently selected dataset. The highlighting and selection will be based on
the splitting rules applied to the current dataset.
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Figure 1.1: Variables window.

1.3 Working with the tree

1.3.1 Many faces of a tree

The tree window is the main place for all actions related to the tree. The
initial look of the tree is shown in Fig. 1.2. Each node is represented by
a rectangle with a class name written inside. The size of each rectangle is
proportional to the number of cases in the node. Most recent splitting rule
is drawn above the node (except for the root node). From the center of each
rectangle a straight line is drawn to its children. Every child node is placed
on the level directly below the parent.
Various different properties of the visualization can be modified:

e node size
The size of the rectangle representing a node can be either of fixed
size or proportional to the number of nodes. Fixed mode usually gives
better overview and allows the comparison of proportions within the
nodes. Variable size is useful to compare the weight of a branch -
branches consisting of mainly small nodes may be of less interest if the
categories are of similar size. The node size can be toggled with the s

key?.

2 All properties can also be modified using the View menu.
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Figure 1.2: Tree window.
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e connecting lines

Mostly two different kinds of connecting lines are used. Straight lines
as in Fig. 1.2 resemble natural trees but can cause overlapping if nodes
are moved downwards. Therefore often the combination of vertical and
horizontal lines is used instead, giving the tree a “rods-and-wires” look.
In this mode nodes can be dropped down to the lowest level without
lines crossing other nodes. The type of connection lines can be toggled
with the ¢ key.

e leaves
The terminal nodes - leaves - can be either placed below their parents
or “dropped” down to a common level - usually the level of the deepest
leaf. Such dropping makes visual comparison among all leaves much
easier and allows direct identification with a spineplot of leafs as will
shown later in section 1.4. The arrangement of final nodes can be
toggled with the f key.

e labels
Especially for larger trees labels may clutter the tree and therefore
KLIMT allows them to be switched on and off by pressing the 1 key.

e orientation
Usually trees are plotted in top-bottom orientation. For deep trees this
may cause problems because the screen has usually more room in hori-
zontal than vertical direction. KLIMT allows the tree to be displayed in
left-right orientation. Toggling between the two orientations is possible
with the Shift+r key.

e criterion

KLIMT offers a way to visualize the criterion used during the tree con-
struction. If deviance was used then deviance gain in each inner node is
represented by circles and remaining deviance in leaves is represented
by rectangles. The size of each symbol is proportional to the corre-
sponding value. This way it is easy to visually detect at a glance pure
leaves (no rectangle drawn because deviance is zero), good splits (large
circles) or problematic leaves (large rectangles meaning very impure
nodes).

At any time you can tell KLIMT to re-arrange the tree using its node
placement algorithm by pressing the r key. The user is not limited to the
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trees designed by KLIMT, he can freely move any node by dragging it with left
mouse button. If no modifier key is pressed the entire branch is moved, i.e.
the entire subtree with the dragged node as root. If the <Ctrl> button is held
down during the dragging, only the selected node is moved. Finally holding
the <Shift> key causes the movement to be constrained to one direction.

1.3.2 Tool modes

While working with the tree KLIMT offers four different tool modes. Each
mode is identified by different cursor shape.

e Selection

This is the default mode when KLIMT is started and is identified by
cursor having the form of an arrow. In this mode you can modify the
tree and drag nodes. When you click on a node, all cases of that node
are selected as well as the node itself. The case-wise selection will be
discussed in detail later in section 1.5. Querying a node is done by
holding the <Alt>3 key during the click. A small query information
window will appear with details about the node. Extended query can
be obtained by holding both the <Shift> and <Alt> key. You can
switch to this mode by pressing the e key?.

e Node picker
This mode allows to select a node without selecting cases in the node.
This is useful in conjunction with other plots to identify a node without
changing the current case selection. The query is possible in this mode
as well. The cursor will have the form of a pointing hand in this mode
and the corresponding key to switch to this mode is n.

o Move
In this mode dragging the mouse causes the entire working area to be
moved in the direction of the dragging. This mode can be temporarily
turned on by holding the <Space> key. KLIMT returns to previously
used mode as soon as the key is released. Alternatively you can switch
to this mode by pressing the v key.

3The Alt key is on some platforms called the meta-key.
4Modes can also be switched via the Tools menu.
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e Zoom

Finally KLIMT provides zooming facilities. In this mode, which can be
identified by a cursor in form of a magnification glass®, clicking causes
the zoom factor to be doubled, resulting in a zoom-in. If the <Shift>
button is held during the click zoom-out is performed instead. The
zoom center is always the point where the mouse points while click-
ing. KLIMT supports logical zoom which means that node symbols
are changed to small circles and labels are shortened or left out en-
tirely when zooming out considerably. The zoom mode is activated by
pressing the z key.

1.3.3 Pruning

Besides the tree visualization properties KLIMT supports manual pruning.
After selecting a node with the selection tool or node picker one can go to
the menu item Node—Prune or press the p key to chop off all nodes below
the current node. A small plus sign in a circle beside the node indicates that
pruning has been performed. The pruning can be undone by clicking on the
plus sign.

The pruned nodes are not visible but still considered when the tree layout
is designed or the criterion display is drawn. In order for the nodes to be
pruned permanently it is necessary to create a new, pruned tree by pressing
the Shift+n key. The new tree is still linked to the old one because it uses
the same dataset, but layout and visualization is done independently.

1.4 Plots

Visualization of the tree itself does not provide enough insight in the structure
and dependencies of the dataset. Trees display the modeled structure but
don’t reveal much information about single cases. Therefore it is necessary to
provide at least some basic plots to be used for the analysis. KLIMT currently
supports following plots:

e Histograms

e Barcharts

50n some platforms that don’t have this cursor type available and don’t support custom
cursors the cross-hair cursor is used instead.
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Figure 1.3: A histogram and a barchart.

e Scatterplots
e Treemaps
e Spineplots for leaves

Further plots such as boxplots or regular spineplots as well as special plots
in particular tree size vs. misclassification plot are planed for the future.

Histograms and barcharts

Histograms and barcharts are displayed when one or more variables are se-
lected in Variables window and the user clicks on the Hist/Bar button. For
categorical variables barchart and for continuous variables histogram is used.
If more variables are selected one plot for each variable is drawn. The re-
sulting plots are shown in Fig. 1.3. Unlike for a tree there is no complex
set of tools, only case-wise selection is used. The sequence of the bars in a
barchart can be changed by the drag and drop method. The anchor point
and bin width of an histogram can be interactively adjusted by dragging
the corresponding symbol in left bottom corner. One additional feature of a
histogram is the possibility to display the current splitting rule. If a node is
selected in a tree and the variable used in the split is the same as the variable
of the histogram then the split value is drawn as a red vertical line in the
plot.



CHAPTER 1. USAGE OF KLIMT 10

[[] = ————scatterpioi [FIE us ALTER ="——"—=—HIH
A0#H « = = . . : e ';J_:_!
39.H I
38
37.H
36,4
T T T T T T T
20.0 30.0 0.0 50.0 &0.0 T0.0 go.o |7/

Figure 1.4: An enhanced scatterplot.

Scatterplots

Scatterplots can be displayed in KLIMT by selecting two variables in the
Variable window and clicking on Scatter. If no node is selected in any tree
then a regular scatterplot is plotted. Labels on the axes can be toggled by
pressing the 1 key similar as in the tree window. The axes can be swapped
by pressing the Shift+r key which stands for rotate.

The true value of scatterplots in conjunction with trees becomes visible
when a node is selected in the tree window. A scatterplot is a two dimensional
projection of the data space. A tree can be seen as a rectangular partition of
that space. Therefore it is possible to plot that partition in the scatterplot.
The result can be seen in Fig. 1.4. The blue lines represent splits in the tree
and the yellow filled area corresponds to the currently selected node. If the
splits used in the tree contain also other variables than the ones used in the
scatterplot, the number of partitions in the scatterplot is smaller than the
number of leaves of the tree. This is due to splits in additional dimensions
that are not visible in the two dimensional projection. Sometimes plotting
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Figure 1.5: A treemap.

several scatterplots of different variable combinations may help to detect the
structure and possible weaknesses of the model.

All plots discussed so far are independent of the actual tree and the user
can draw any number of such plots. Although they offer some additional
features when used in conjunction with a tree, they are still based only on
the dataset. The following plots are not based on the dataset alone but on
the tree structure and are therefore tightly connected to the tree. Therefore
one tree can have only one of these plots associated.

Treemaps and spineplots for leaves

The treemap can be obtained by pressing the m key in a tree window or by
selecting View—Show treemap in the menu. A typical treemap can be seen
in Fig. 1.5. The idea of a treemap as described in ?? is to partition an area
proportionally according to a split in each node. Unlike in scatterplots where
only splits of the two plotted variables can be seen, in treemaps the area is
split in exactly as many partitions as there are leaves. The area of each
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Figure 1.6: A spineplot of leaves.

partition is proportional to the number of cases in the leaf. In a treemap
the orientation of the first split can be toggled by pressing the Shift+r key
which stands for rotate again, just like in scatterplots and tree window.

Technically a spineplot of leaves as shown in Fig. 1.6 is a treemap where
the orientation of splits is not alternated. To turn the split alternation on
and off the a key can be used. In a spineplot the size of each leaf corresponds
to the width of the corresponding bar. If the user didn’t reorder the leaves
in the tree window then the sequence of leaves in the tree window matches
exactly the sequence of the leaves in the spineplot.

1.5 Selection

One of basic principles of interactive graphics is the use of linked highlight-
ing. The idea is that selected cases of the dataset are highlighted in every
plot of the system. In KLIMT selected cases are displayed in another color
than non-selected cases. In previous figures 1.3-1.6 green color denotes the
selected cases. The selection is done either by clicking or dragging. In his-
tograms or barcharts clicking selects all cases of a bar, in a tree window it
selects all cases of a node and in a scatterplot single case is selected. In scat-
terplots it is possible to select an entire area of cases by dragging a selection
rectangle. When no additional keys are pressed the recently selected cases
will be highlighted. Modifier keys change that behavior.
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To conveniently describe what happens let A denote the set of cases
highlighted before the selection, B the set of currently selected cases and C
the set of highlighted cases after the selection. Without any key depressed the
action equals to C' = B. Holding the <Shift> button during® the selection
results in C = (AU B) \ (AN B), in words: the state of selected cases is
inverted (C'N B = AN B), all other cases are untouched (CN B = AN B).
Holding both <Shift> and <Ctrl> buttons results in C' = AU B hence equals
to “adding” new cases. This selection rules apply to all plots.

1.6 Export features

There are two features that are available in all graphics. Pressing Shift+p
causes KLIMT to produce a PostScript file of the current plot”. It is not
merely a hardcopy snapshot, but fully vectorized output therefore suitable
for publication or further processing. This file can be sent directly to a
printer.

KLIMT’s PoGraSS classes offer also another portable output: the PGS
meta format. By pressing the Shift+x button for “export” a meta-file out-
put.pgs of the current plot is created. This file can be viewed or converted to
any other format which is supported by PoGraSS as described in section ?7.

1.7 Import and missing values

KLIMT supports missing values to that extent that it accepts them and tries
to handle them separately when necessary. When building linked highlight-
ing, cases are dropped down the tree as far as they go without the need of
evaluation of missing values. This means that the cases of children nodes do
not necessarily join to build a parent node. For categorical variables the miss-
ing values build an own category denoted NA. In continuous variables they
have no value (i.e. 0 is not assumed) and therefore they do not influence the
min/max functions. Continuous plots currently don’t display missing values,
but in all other plots (including a tree) they can be selected just like any
other values.

6More precisely: relevant is the state of keys in the moment of mouse button release.
"The file is called output.ps and contains a bounding box which makes it EPS compatible
and flexibly reusable.
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When importing a dataset KLIMT understands three notations for a miss-
ing value: the NA string as used by R, ? as often used on PC platforms and
Mac’s n/a symbol (ASCII 0xA5). In general KLIMT was made to accept the
format produced by write.table function of R. Similar ASCII formats such
as space delimited values are supported as well. For more obscure formats
either R itself or my recently developed DaMaT (Data Management Tool)
can be used to obtain a format acceptable for KLIMT.® It is also possible
to use KLIMT as stand-alone application with a dataset, but without a tree.
Trees can be loaded interactively from external files later when necessary.

8 As KLIMT is intended for use with R, I decided to not integrate DaMaT’s functionality
in KLIMT, because R provides functions for import and export powerful enough.



Chapter 2

Applications

In previous chapter the various features of KLIMT have been described, but
in order to show how exactly they can be used for the exploratory data
analysis I want to illustrate the application of KLIMT on two real datasets.
The datasets were not chosen explicitely to show the excellence of tree models
or KLIMT, but selected at random.

It is hard to present the real value of an interactive software in printed
form, because immediate interactivity, the main strength of exploratory meth-
ods cannot be expressed. In following sections I will include some snapshots
of certain plots, but during the analysis dozens of different views, selections
and plots are viewed.

For example opening a few histograms of used variables and clicking on
each leaf gives a rough idea about the distribution of the cases for each
variable. To do the same with static plots for a tree with ten leaves and
four variables it would involve printing of 40 plots. Comparison of 40 printed
plots is very hard if possible at all. Interactive methods allow you to use only
four plot windows and differences can be very easily compared by alternately
clicking on the leaves of interest.

To give at least some idea of the application of KLIMT, following two
sections describe the analysis of two real datasets.

2.1 Classification task

The first example is the meningitis dataset which was briefly introduced in
section ??. The dataset described here is slightly different from the dataset

15
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Figure 2.1: Classification tree of meningitis dataset using all variables and
deviance splitting criterion.

used for the sample tree in section ?? because it contains more variables
and more cases (total of 160). The dataset classifies patients treated for
meningitis disease in two groups according to the outcome (QUT): no means
that the patient either died or didn’t leave the coma, yes classifies patients
that recovered from the disease. The goal is to find a model that will predict
the result of the treatment according to the variables acquired during the
first inspection when the disease was detected.

The following variables were used for the building of the classifier: AGE
and SEX are self-explaining, TEMP is the body temperature in degrees Celsius,
GERM is the type of the germ of the meningitis disease, MEN denotes the class
of the disease and finally ZZLQ,GRA and LEU are values obtained from body
liquids. The last three variables as well as TEMP contain missing values.

Let’s start with building a tree using the variables listed above. The
resulting tree is shown in Fig. 2.1. In order to highlight all cases with negative
outcome, select OUT, click on Hist/Bar and select the bar with the no label.
We see that the tree splits AGE very early into three branches, where the
leftmost node is even pure because a query displays 0 cases of no and 42
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Figure 2.2: Histogram of AGE variable and scatterplot TEMP vs AGE with
negative cases selected.

of yes class. Histogram of AGE in Fig. 2.2 with highlighted negative cases
confirms that there were no casualties among younger patients. To compare
the negative cases in both remaining nodes of the splits on AGE we can switch
to the proportional mode. It is clearly visible that the right branch contains
relatively more negative cases. A query on the node tells us that the chance
of survival for patients older than 70 is roughly 50% and for patients between
40 and 70 years of age it is more than 80%.

Let’s consider the right branch, that is patients older than 70 years of age.
More information can be obtained from a scatterplot of TEMP vs AGE, because
TEMP seems to improve the classification for that group. The plot confirms
that old patients with lower body temperature apparently have higher mor-
tality rate. This could be due to the fact that lower temperature means
lesser activity of the immunosystem which could indicate that it cannot fight
against the disease germs and therefore leading to a bad outcome. Plotting
different plots of all other variables to find some explanation with cases in
question selected does not yield any results. The further split on GRA seems
very likely to overfit the data.

The analysis of the middle branch of patients of age between 41 and 70
years gives some interesting results. Patients of that age died only if they
were infected by certain meningitis germs. Surprisingly this does not hold
true for the older group we analyzed before, in fact they died regardless of
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Figure 2.3: Barchart of GERM variable. In left plot shows selected patients
older 70 with negative outcome in right plot patients between 41 and 70 with
negative outcome.

the germ type as Fig 2.3 shows. This comparison could be done with GERM
vs AGE parallel dotplots and selected no class as well. Further splitting uses
medical properties and is fairly difficult, because all three variables: GRA,
ZZLQ and LEU contain relatively many missing values. Even though the split
on GRA seems to do well by separating into nodes 4/22 and 6/3 the scatterplot
GRA vs AGE reveals that in practice it’s likely to fail because the remaining
negative values are widely spread and their further splitting is based only on
4 cases.

Still the results obtained so far are easy to interpret and even possible
to explain to a physician. First deciding factor is the age, for older patients
the body temperature is the second factor to watch, for younger patients it’s
the germ type of the disease. The corresponding survival rate estimates are
directly visible from the queries of the corresponding nodes.

We have considered only one tree so far. Let’s grow another tree and
see if it confirms the results concluded from the first model. An option is to
generate a tree based on the same dataset but different splitting rule. Fig 2.4
shows a tree grown using the Gini index of impurity without missing values.

KLIMT has the ability to open multiple trees of the same dataset. To
load additional tree to KLIMT, save the tree in R in a separate file and use
Open tree.. button in the variables window. All trees are use the same
linked highlighting. At first glance we can see that the trees are very similar.
First split is on AGE, second is GERM for younger patients and TEMP for older
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Figure 2.4: Classification tree of meningitis dataset using all variables and
Gini index as splitting criterion.

patients. One obvious change is that the group of patients of age 40 and
younger is not splitted in an own node. Selecting that node in the first tree
shows how these cases are classified in the second tree. Obviously they are
spread across the entire branch of the tree. Most of them fall in the category
of “good” germs, but those not filtered out by the GERM rule are hard to
catch. This is obviously a weakness of the second classification tree.

Another way of comparing both trees is to use treemaps of both plots
as displayed in Fig. 2.5. First tree tends to make more clear classifications,
there are only few and smaller nodes with evenly populated leaves. Also the
leaves of the second tree always contaminated compared to the leaves of the
first tree. It is possible to use the interactive features to see the distribution
of cases in leaves of one tree in the other tree.

It would be interesting to use improved classifiers as described in sec-
tion ??7 and visualize the results. This could be done for example by applying
colors to cases according to the number of misclassifications. Using already
existing interactive features of KLIMT this would help to analyze potential
problematic cases. Currently KLIMT does not support this feature, but it is
on the list of tasks to be done in next versions.
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Figure 2.5: Treemaps of both trees from previous figures with negative cases
selected.

2.2 Regression task

The second example in this chapter is an example of a regression tree. It
is based on the birth weight dataset mentioned in section ??7. The vari-
able BirthWt contains the birth weight of a newborn baby. Other variables
represent the knowledge accumulated before the birth. They contain basic
information about the mother (AgeMom, Race, Smokes and LastWt) as well
as boolean variables denoting potential complications (Hypertension, Uter-
inelrrit) or actions taken before the birth (FirstTriVisits, PreLabors). This
dataset was used in classification context with birth weights classified in low
and high, but now we will try to predict the weight of the newborn with a
regression tree. The total number of cases is 1809.

The regression tree obtained when using all variables to explain BirthWt
is shown in Fig. 2.6. It seems that last weight of the mother plays the most
important role, but it is hard to see anything more in the tree. This is
also due to the fact that we are interested in the predicted values that are
associated with leaves, but they are scattered all over the display. Perhaps it
would be more fruitful to display all leaves on the same level. Soon it turns
out that displaying all nodes on one level leads to very cluttered display with
all labels mixed. Solution to that problem is the rotate function which can
be used to display the tree in the horizontal orientation. Some information
about the quality of each split could be useful, because the tree seems a way
too big for that relatively small number of cases. Deviance gain in each node
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Figure 2.6: Regression tree of low birth dataset.

and remaining deviances in leaves can be visualized as well. The resulting
tree can be seen in Fig. 2.7.

The red circles beside each inner node represent the deviation gain in the
node. The size of each circle is proportional to the gain, that is the difference
between the deviance of the parent node and the sum of deviances in children
nodes. It is possible to see that the first split, second split on Urinelrrit and
fourth on Race have the biggest gain.

The size of each rectangle beside a leaf is proportional to the remaining
deviance in the leaf. In this model the remaining deviance mostly propor-
tional to the size of the node, which is a bad sign, because our nodes don’t
contain tight groups of values of the response variable. Further analysis sup-
ports this conjecture. Best way for such analysis is to plot a histogram for
BirthWt and highlight node by node. Such histograms for two leaves (2405
left, 3064 right) are given in Fig. 2.8. Although the difference between both
response predictions is fairly high (2405 is the lowest prediction, 3064 is ap-
proximately in the middle) distributions in both nodes considerably overlap.

In order to prevent the splitting in many small nodes and thus risk over-
fitting, we can prune the tree. From the deviance gain visualization it seems
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Figure 2.7: The same regression tree but rotated and with deviance gain
displayed.
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Figure 2.8: Histograms of birth weight with different leaves selected.
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Figure 2.9: Pruned regression tree.

like pruning after the split on Smokes and removing the very poor LastWt
split could be a good idea. The resulting tree is shown in Fig. 2.9.

Another approach is to use R’s prune.tree function to obtain deviance
vs size plot as displayed in Fig. 2.10. From this plot it is visible that the
best tree will be of size 5. Using the results from this plot R can find the
optimal tree of size 5. It is interesting that the intuitive pruning based on gain
visualization produces exactly the same tree as this optimalization approach.

The resulting leaves are much better. Despite their size they give quite
distinguished predictions. For example a t-test of difference of means for
leaves 3040 and 3531 shows highly significant difference (p = 0.0006). That
test can be either done directly in R or alternatively KLIMT offers the pos-
sibility to export selected cases of a variable by pressing Shift+c key in the
corresponding histogram.

If the above problem is treated as a classification task, the results are
totally different. From medical point of view children with lesser weight
than 2.5kg are classified as having “low” weight and are to be observed more
carefully. Such distinction leads to a classification model. The variables
Race, Uterrinelrrit and Smokes do not appear in the classification tree at all.
Instead PrelLabors is used in the root split, followed by LastWt and AgeMom.
The corresponding tree is given in Fig. 2.11.
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Figure 2.10: Deviance vs size plot for a sequence of pruned trees.

This is not that far from the results obtained when logistic regression is
used. PrelLabors used for the first split turns out to be only highly significant
factor in that model, followed by the significant factors Hypertension and
LastWt. Hypertension is not used in the tree model, because there are only 12
cases of hypertension in the dataset and they are distributed 7:5 in low:high
thus its contribution in a tree model would be very small.

Obviously the race difference which played an important role in the regres-
sion tree (significant difference) is not significant in the classification model.
This is mainly because both groups had a mean far higher than 2500, now
fall into the same class and therefore are of no interest in the new model.
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Figure 2.11: Classification tree for the low birth dataset. Cases with birth
weight < 2,500g are selected.
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Appendix A

Shortcuts and Technical
Information

A.1 Shortcuts

Tool modes in a tree window:

<e>
<z>
<v>
<n>

sElect cases

Zoom

moVe (or hold <space> key for temporary pan mode)
Node select

Other commands in a tree window:

<c>

<d>

<f>

<h>

<I>

<m>
<shift><n>
<o>

<p>

<q>

<r>
<shift><r>

toggle type of Connecting lines
toggle Deviance display
toggle Final node alignment
Help

toggle Labels

tree Map

new (pruned) tree

Open file

Prune

Quit

Re-arrange nodes

Rotate

26
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<s> toggle node Size (fixed/proportional)
<4>/<-> change deviance zoom

Commands for a treemap:

<a> Alternate splits, i.e. toggle between treemap and
spline plot view
<r> Rotate, i.e. change the orientation of the first split

Commands for all plots:

<shift><c>  write all currently selected cases to a file
<shift><p>  Print current plot - create a PostScript output file
<shift><x>  eXport current graphics to a PoGraSS metafile

A.2 Classes

The list of main public Java classes is given here along with a short description
of each class. These classes can be used in the R interface. More detailed
description of all attributes and methods can be obtained from the JavaDoc
documentation of KLIMT.

Axis
Handles conversion between data space and the graphical units for
displays. It is used by various plots.

BarCanvas
Implementation of a barchart

Commander
Interface used by most windows to pass messages, such as user com-
mands.

Common
This class contains static attributes and methods that can by used by
any class. Among others the current version and release numbers are
stored here.

DBCanvas
Extension of Canvas to support double-buffering.
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Dependent
Interface for classes that want to be notified.

HelpFrame
Help frame for a tree window.

HistCanvas
Implementation of a histogram.

Klimt
Wrapper for KLIMT’s functionality. One instance can handle one dataset
and several trees. This class is not used in stand-alone KLIMT, but is
the basis for the €2 interface between R and KLIMT.

MosaicCanvas
Implementation of treemaps and spineplots of leaves.

MsgDialog
General purposse message dialog with an “OK” button.

Node
Implementation of a general tree structure.

Notifier
A class that provides notification functionality.

PoGraSS
Abstract class defining the PoGraSS interface.

PoGraSSPS, PoGraSSgraphics, PoGraSSmeta
Various implementations of the PoGraSS interface.

SMarker
A class providing the linked highlighting functionality for a dataset.

SNode
Node with statistical information, such as splitting rule etc.

SVar
Storage of a variable.
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SVarSet
This class builds a dataset, uses SVar for each variable.

ScatterCanvas
Implementation of a scatterplot.

TFrame
Extended Frame as used by most windows in KLIMT.

TInfoCanvas
Display of a query result.

TreeCanvas
Implementation of the tree visualization and handling.

VarCanvas
Canvas of the Variables window.

A.3 R-Interface

In order to use the bi-directional R-interface, you must have SJava from
the O project installed and properly configured, including the corresponding
Java runtime environment. The entire code is very experimental and under
development so this small section is here for those adventurous to give you
a rough idea about the concept. The following example illustrates the use of
the interface. It is an example on the lowest level, later often used steps can
be grouped to functions that make the work easier for the user. A detailed
description of the Java interface can be obtained from the {2 homepage.

> library(SJava)

> .Javalnit(list(classPath=c ("KLIMT.jar")));
> k<-.JavaConstructor ("Klimt","myData")

> ti1<-.Java(k,"getTree",0:0)

> .Java(tl,"toString")

[1] "SNodel[cond=\"root\",cases=189,F1=9.992E7,Name=\"2945\"]"
> t2<-.Java(k,"addTree","secondTree");

> src<-.Java(tl,"getSource")

> m<-.Java(src,"getMarker")

> for (1 in 1:100) .Java(m,"set",i,1:1)

> .Java(m,"NotifyAll")



APPENDIX A. SHORTCUTS AND TECHNICAL INFORMATION 30

First two lines load the SJava library and initialize the Java interface.
KLIMT. jar is given as class-path, because we need to use classes of KLIMT.
This call assumes that KLIMT’s Java-archive is located in the current direc-
tory.

In the next step a KLIMT-object is created using myData file as source.
This equals to calling KLIMT directly from R as described for the file interface,
but the main difference is that we obtain an object of the class K1imt in R,
which is the core for further interactivity between both systems.

To get the first currently loaded tree the getTree method of the class
Klimt can be used. This is done in line 4. What we get is an object of the
class SNode, i.e. the root node of the tree. Basic information about the node
can be obtained using the toString method. The call and corresponding
output are shown in lines 5 and 6.

An additional tree can be loaded into KLIMT at any time, using the
addTree method. The tree is displayed immediately in a new window and
the currently used linked highlighting is attached the the new tree.

Finally let’s demonstrate how R can directly manipulate data objects
in KLIMT. We want to select first 100 cases of the dataset associated with
the tree t. The getSource method delivers the required data source and
getMarker the corresponding marker that is used to highlight cases. A reg-
ular loop in R is used to select all cases with index 1 to 100. Finally we want
to notify all plots about the change by calling the NotifyAll function. This
method can be used to create complex animations. Most parameters of all
plots can be changed from within R.

In order to make this interface available to wide variety of users, is it
necessary to provide wrapper functions that will hide the underlying Q) com-
mands from the user. Using such wrapper functions, the above example looks
as follows.

source("klimtOH.r")

k <- Klimt(myTree,myData);

t1 <- Klimt.tree(k,0);

t2 <- Klimt.addTree(k,newTree);

for (i in 1:100) Klimt.setMarkAt(k,i)
Klimt.refresh;

The file k1imt0OH.r contains the definitions of the wrapper functions. It
also automatically loads the necessary SJava library and initializes the Java
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subsystem. All commands are rather self-explaining and correspond to their
low-level counterparts.
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